# Dynamics and Memory of Heterochromatin in Living Cells

N.A. Hathaway, O. Bell, C. Hodges, E.L. Miller, D.S. Neel, G.R. Crabtree Stanford University School of Medicine

*Cell* **149**, 1447–1460, 2012



Journal Club, 2014

Erzsébet Ravasz Regan

### What is epigenetics?

Original definition: \* mechanisms by which different cellular phenotypes are clonally heritable, without altering the genetic code \* self-sustaining in the absence of original stimulus

mammalian cell types

What types of mechanism? \* DNA methylation \* nucleosomal histones ??? (\* noncoding RNAs) Field studying these + noncoding RNAs = epigenetics

## Heterochromatin formation -H3K9m3 and binding of HP1

HP

SETDB1

enzymes"

Me

Suv39h1/2

### H3K9m3-bound HP1 condenses chromatin

HP1 recruits histone methyltransferases (HMTs) => H3K9m3 on *neighboring* nucleosomes

> Spreading of H3K9m3

DNMT3



### **Proof of principle: position effect variegation**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.





Distant the section of the section o

(a)



Definite proof of histone code heritability on a promoter is lacking

### **Questions:**

- are histone modifications heritable?
- how do they interface with transcription?
- how do they propagate?
- how do they interface with DNA methylation?

## The story of Oct4 and reprogramming

### \* Silencing pluripotency genes (e.g., Oct4) <- loss of active histone marks (H3K27<sup>AC</sup>, H3K9<sup>AC</sup>)

### \* Reprogramming somatic cells to iPS state <- loss of repressive histone marks (H3K27<sup>ME</sup>)



# Approach: CIP (chemically induced proximity)

A TAT SURSES MAN SECURITY A 1444



# Tethering Hp1 in combination with a strong transcriptional activator



## Differentiation of Cia:Oct4 ES cells turns off the Oct4 locus

She water a toy was some second to the







## csHP10 is recruited to the Oct4 locus by 6h and saturated by 24 hours



# Establishment of a repressive histone code





## Establishment of a repressive histone code

The store was some corper

wt Oct4 common primers **CiA-specific** CiA:Oct4 H3K9me3 H3K4me3 HP1y H3K27ac **D**180° **>**180°

primers



## Establishment of a repressive histone code

-10000

-2000

2000 4000 6000

-10000

2000

HDAG

G9a

DNMT3



-10000

2000

position relative to TSS

-2000

0

2000 4000

-10000

-2000

2000

## In single cells, the Oct4 promoter is a bistable switch



## Chromatin at the Oct4 locus compacts with HPI recruitment



## DNA methylation of the Oct4 locus follows histone-mediated silencing (slowly...)



# Switch flipped. Can we let go and expect it to stay flipped?



## DNA methylation stabilizes the OFF state of the Oct4 promoter



### DNA methylation <u>enhances</u> heritable transmission of the OFF state



### DNA methylation helps maintain repressive histone code following washout



# ES cell summary: $ON \rightarrow OFF \rightarrow ON$



### How about OFF -> ON -> OFF?

Can transcription factors alter epigenetics of the Oct4 promoter?



# In MEFs, Oct4 is silenced by repressive chromatin

TO SEA AND A TON WASAS M



# TF binding does not block targeted HPI recruitment



# TF binding does not block targeted HPI recruitment



### Replication-dependent histone exchange is not required for Oct4 silencing

Distant and in the second in manufactor of the



### Combinatorial recruitment system

TALLOW YYYYY

stand.

THE REAL PROPERTY AND THE SECTION OF THE SECTION



### Bistability of the transcription switch







# "Copy enzymes": línear, stochastíc H3K9m3 propagation



# "Copy enzymes": línear, stochastíc H3K9m3 propagatíon



# Model + experiment => rate of H3K9m3 spreading and turnover



 $k_{bounded} = k_{+}/k_{-} < 1.5$ 

ES: spreading is faster, turnover is slower

- 10kB domain in ES
- 2kB domain in MEFS

propagation rate to neighboring nucleosome ~ every \$5.7 hr in ES cells

~ every \$6.9 hr in MEFs.

# Kinetic Model Predicts Shapes of Genomic H3K9me3 Domains



H3K9me3 ChIP-seq, mouse ES cells

### 2 distinct rates account for 99.2% H3K9m3 domains

### Conclusions

- a nucleation point for HP1 binding can turn off a gene via altering the histone code, in spite of TFs to drive transcription
- DNA methylation or absence of transcription stabilizes the OFF state
- strong tethering of a transcription factors can turn locus ON, overcoming repressive chromatin (as long as nucleation is weak)

### Conclusions (in pictures)

#### Histone-code <u>alone</u> is bistable



#### OFF ON

### OFF: stably heritable in the **absence** of transcriptional activators

- OFF: heritable in the presence of TFs in the cell, but frequent stochastic ON-flip
- ON: stably heritable in the presence of **active transcription** and lack of HP1 nucleation

### Histone-code + DNA methylation <u>strongly</u> bistable



• OFF: stably heritable, with rare stochastic ON-flip



- I never learned this much epigenetics from anywhere else
  - not from reviews
  - not from conference
- Proves heritable bistability of histone code
  - attention to the role of stochastic events, dependent on barrier height
- Simple, conceptual kinetic model -> broad applicability: H3K9m3 marks are copied to neighbors





- How does the histone DNA methylation (double)
   switch work in EC genes induced/repressed by signals
  - Mardsen: DNA methylation stays off, histone code is flipped ON/OFF by biological signals
  - Aird lab :vWF promoter DNA methylation (and histone) undergoes stochastic flips
- Do the DNA methylation-related results of this paper only apply to CpG islands?



### what is epigenetics?

#### **Original definition:**

\* mechanisms by which different cellular phenotypes are clonally heritable, without altering the genetic code

#### What types of mechanism?

\* DNA methylation
\* nucleosomal histones
\* regulatory circuits with positive feedback

Any mechanism able to generate stong bistability



#### Dynamics and Memory of Heterochromatin in Living Cells N.A. Hathaway, O. Bell, C. Hodges, E.L. Miller, D.S. Neel, G.R. Crabtree Cell 149, 1447–1460, 2012



Journal Club, 2014

Erzsébet Ravasz Regan